stacker.news/docs/semantic-search.md

6.8 KiB

Getting semantic search setup in OpenSearch is a multistep process.

step 1: configure the ml plugin

PUT _cluster/settings
{
  "persistent": {
        "plugins.ml_commons.only_run_on_ml_node": "false",
        "plugins.ml_commons.model_access_control_enabled": "true",
        "plugins.ml_commons.native_memory_threshold": "99"
      }
}

step 2: create a model group

POST /_plugins/_ml/model_groups/_register
{
  "name": "local_model_group",
  "description": "A model group for local models"
}

step 3: register a pretained model to the model group

Importantly, we need to use a model that truncates input. Note the feature number of the model you're using, because we'll need to store those features. For example, the model below has 768 features.

POST /_plugins/_ml/models/_register
{
  "name": "huggingface/sentence-transformers/all-mpnet-base-v2",
  "version": "1.0.1",
  "model_group_id": <model group id>,
  "model_format": "TORCH_SCRIPT"
}

step 4: wait until the model registration is complete

GET /_plugins/_ml/tasks/<task id from above>

step 5: deploy the model

Note the model id

POST /_plugins/_ml/models/<model id>/_deploy

step 6: create an ingest pipeline

Most models choke on empty strings, so we remove them at an earlier stage in the pipeline. We also add the model to the pipeline which generates the embeddings.

PUT /_ingest/pipeline/nlp-ingest-pipeline
{
  "description": "An NLP ingest pipeline",
  "processors": [
    {
      "remove": {
        "field": "text",
        "if": "ctx?.text?.trim() == ''"
      }
    },
    {
      "remove": {
        "field": "title",
        "if": "ctx?.title?.trim() == ''"
      }
    },
    {
      "text_embedding": {
        "model_id": "6whlBY0B2sj1ObjeeD5d",
        "field_map": {
          "text": "text_embedding",
          "title": "title_embedding"
        }
      }
    }
  ]
}

step 7: create a new index with the knn_vector type

We'll need to create mappings for the embeddings which is also a convenient time to specifiy special analyzers for the text and title fields.

PUT /item-nlp
{
  "settings": {
    "index.knn": true,
    "default_pipeline": "nlp-ingest-pipeline"
  },
  "mappings": {
    "properties": {
      "text": {
        "type": "text",
        "analyzer": "english",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "title": {
        "type": "text",
        "analyzer": "english",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "title_embedding": {
        "type": "knn_vector",
        "dimension": 768,
        "method": {
          "engine": "lucene",
          "space_type": "l2",
          "name": "hnsw",
          "parameters": {}
        }
      },
      "text_embedding": {
        "type": "knn_vector",
        "dimension": 768,
        "method": {
          "engine": "lucene",
          "space_type": "l2",
          "name": "hnsw",
          "parameters": {}
        }
      }
    }
  }
}
PUT /_search/pipeline/nlp-search-pipeline
{
  "description": "Pre and post processor for hybrid search",
  "request_processors": [
    {
      "neural_query_enricher" : {
        "description": "Sets the default model ID at index and field levels (which doesn't actually work)",
        "default_model_id": <model id>,
      }
    }
  ],
  "phase_results_processors": [
    {
      "normalization-processor": {
        "normalization": {
          "technique": "min_max"
        },
        "combination": {
          "technique": "arithmetic_mean",
          "parameters": {
            "weights": [
              0.7,
              0.3
            ]
          }
        }
      }
    }
  ]
}

step 9: set it as the default search pipeline

PUT /item-nlp/_settings
{
  "index.search.default_pipeline" : "nlp-search-pipeline"
}

step 10: reindex your data if you have data

Warning: this take a very very long time.

POST _reindex?wait_for_completion=false
{
  "source": {
    "index": "item"
  },
  "dest": {
    "index": "item-nlp"
  }
}

You can check the status of the reindexing with the following command:

GET _tasks/<task id>
GET /item-nlp/_search
{
  "_source": {
    "excludes": [
      "text_embedding",
      "title_embedding"
    ]
  },
  "size": 100,
  "function_score": {
    "query": {
      "hybrid": {
        "queries": [
          {
            "bool": {
              "should": [
                {
                  "neural": {
                    "title_embedding": {
                      "query_text": "etf bitcoin",
                      "model_id": <model id>,
                      "k": 100
                    }
                  }
                },
                {
                  "neural": {
                    "text_embedding": {
                      "query_text": "etf bitcoin",
                      "model_id": <model id>,
                      "k": 100
                    }
                  }
                }
              ],
              "filter": [
                {
                  "range": {
                    "wvotes": {
                      "gte": 0
                    }
                  }
                }
              ]
            }
          },
          {
            "bool": {
              "should": [
                {
                  "multi_match": {
                    "query": "etf bitcoin",
                    "type": "most_fields",
                    "fields": [
                      "title^1000",
                      "text"
                    ],
                    "minimum_should_match": "100%",
                    "boost": 10
                  }
                },
                {
                  "multi_match": {
                    "query": "etf bitcoin",
                    "type": "most_fields",
                    "fields": [
                      "title^1000",
                      "text"
                    ],
                    "minimum_should_match": "60%",
                    "boost": 1
                  }
                }
              ],
              "filter": [
                {
                  "range": {
                    "wvotes": {
                      "gte": 0
                    }
                  }
                }
              ]
            }
          }
        ]
      }
    },
    "functions": [
      {
        "field_value_factor": {
          "field": "wvotes",
          "modifier": "none",
          "factor": 1.2
        }
      },
      {
        "field_value_factor": {
          "field": "ncomments",
          "modifier": "ln1p",
          "factor": 1
        }
      }
    ]
  }
}