447 lines
12 KiB
JavaScript
447 lines
12 KiB
JavaScript
import { decodeCursor, LIMIT, nextCursorEncoded } from '../../lib/cursor'
|
|
import { whenToFrom } from '../../lib/time'
|
|
import { getItem, itemQueryWithMeta, SELECT } from './item'
|
|
|
|
function queryParts (q) {
|
|
const regex = /"([^"]*)"/gm
|
|
|
|
const queryArr = q.replace(regex, '').trim().split(/\s+/)
|
|
const url = queryArr.find(word => word.startsWith('url:'))
|
|
const nym = queryArr.find(word => word.startsWith('nym:'))
|
|
const exclude = [url, nym]
|
|
const query = queryArr.filter(word => !exclude.includes(word)).join(' ')
|
|
|
|
return {
|
|
quotes: [...q.matchAll(regex)].map(m => m[1]),
|
|
nym,
|
|
url,
|
|
query
|
|
}
|
|
}
|
|
|
|
export default {
|
|
Query: {
|
|
related: async (parent, { title, id, cursor, limit = LIMIT, minMatch }, { me, models, search }) => {
|
|
const decodedCursor = decodeCursor(cursor)
|
|
|
|
if (!id && (!title || title.trim().split(/\s+/).length < 1)) {
|
|
return {
|
|
items: [],
|
|
cursor: null
|
|
}
|
|
}
|
|
|
|
const like = []
|
|
if (id) {
|
|
like.push({
|
|
_index: process.env.OPENSEARCH_INDEX,
|
|
_id: id
|
|
})
|
|
}
|
|
|
|
if (title) {
|
|
like.push(title)
|
|
}
|
|
|
|
const mustNot = [{ exists: { field: 'parentId' } }]
|
|
if (id) {
|
|
mustNot.push({ term: { id } })
|
|
}
|
|
|
|
let should = [
|
|
{
|
|
more_like_this: {
|
|
fields: ['title', 'text'],
|
|
like,
|
|
min_term_freq: 1,
|
|
min_doc_freq: 1,
|
|
max_doc_freq: 5,
|
|
min_word_length: 2,
|
|
max_query_terms: 25,
|
|
minimum_should_match: minMatch || '10%',
|
|
boost_terms: 100
|
|
}
|
|
}
|
|
]
|
|
|
|
if (process.env.OPENSEARCH_MODEL_ID) {
|
|
let qtitle = title
|
|
let qtext = title
|
|
if (id) {
|
|
const item = await getItem(parent, { id }, { me, models })
|
|
qtitle = item.title || item.text
|
|
qtext = item.text || item.title
|
|
}
|
|
|
|
should = [
|
|
{
|
|
neural: {
|
|
title_embedding: {
|
|
query_text: qtext,
|
|
model_id: process.env.OPENSEARCH_MODEL_ID,
|
|
k: decodedCursor.offset + LIMIT
|
|
}
|
|
}
|
|
},
|
|
{
|
|
neural: {
|
|
text_embedding: {
|
|
query_text: qtitle,
|
|
model_id: process.env.OPENSEARCH_MODEL_ID,
|
|
k: decodedCursor.offset + LIMIT
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
|
|
const results = await search.search({
|
|
index: process.env.OPENSEARCH_INDEX,
|
|
size: limit,
|
|
from: decodedCursor.offset,
|
|
_source: {
|
|
excludes: [
|
|
'text',
|
|
'text_embedding',
|
|
'title_embedding'
|
|
]
|
|
},
|
|
body: {
|
|
query: {
|
|
function_score: {
|
|
query: {
|
|
bool: {
|
|
should,
|
|
filter: [
|
|
{
|
|
bool: {
|
|
should: [
|
|
{ match: { status: 'ACTIVE' } },
|
|
{ match: { status: 'NOSATS' } }
|
|
],
|
|
must_not: mustNot
|
|
}
|
|
},
|
|
{
|
|
range: { wvotes: { gte: minMatch ? 0 : 0.2 } }
|
|
}
|
|
]
|
|
}
|
|
},
|
|
functions: [{
|
|
field_value_factor: {
|
|
field: 'wvotes',
|
|
modifier: 'none',
|
|
factor: 1,
|
|
missing: 0
|
|
}
|
|
}],
|
|
boost_mode: 'multiply'
|
|
}
|
|
}
|
|
}
|
|
})
|
|
|
|
const values = results.body.hits.hits.map((e, i) => {
|
|
return `(${e._source.id}, ${i})`
|
|
}).join(',')
|
|
|
|
const items = await itemQueryWithMeta({
|
|
me,
|
|
models,
|
|
query: `
|
|
WITH r(id, rank) AS (VALUES ${values})
|
|
${SELECT}, rank
|
|
FROM "Item"
|
|
JOIN r ON "Item".id = r.id`,
|
|
orderBy: 'ORDER BY rank ASC'
|
|
})
|
|
|
|
return {
|
|
cursor: items.length === (limit || LIMIT) ? nextCursorEncoded(decodedCursor) : null,
|
|
items
|
|
}
|
|
},
|
|
search: async (parent, { q, sub, cursor, sort, what, when, from: whenFrom, to: whenTo }, { me, models, search }) => {
|
|
const decodedCursor = decodeCursor(cursor)
|
|
let sitems
|
|
|
|
if (!q) {
|
|
return {
|
|
items: [],
|
|
cursor: null
|
|
}
|
|
}
|
|
|
|
const whatArr = []
|
|
switch (what) {
|
|
case 'posts':
|
|
whatArr.push({ bool: { must_not: { exists: { field: 'parentId' } } } })
|
|
break
|
|
case 'comments':
|
|
whatArr.push({ bool: { must: { exists: { field: 'parentId' } } } })
|
|
break
|
|
default:
|
|
break
|
|
}
|
|
|
|
const { query, quotes, nym, url } = queryParts(q)
|
|
|
|
if (url) {
|
|
whatArr.push({ match_phrase_prefix: { url: `${url.slice(4).toLowerCase()}` } })
|
|
}
|
|
|
|
if (nym) {
|
|
whatArr.push({ wildcard: { 'user.name': `*${nym.slice(4).toLowerCase()}*` } })
|
|
}
|
|
|
|
if (sub) {
|
|
whatArr.push({ match: { 'sub.name': sub } })
|
|
}
|
|
|
|
let termQueries = [
|
|
{
|
|
// all terms are matched in fields
|
|
multi_match: {
|
|
query,
|
|
type: 'best_fields',
|
|
fields: ['title^100', 'text'],
|
|
minimum_should_match: '100%',
|
|
boost: 1000
|
|
}
|
|
}
|
|
]
|
|
|
|
for (const quote of quotes) {
|
|
whatArr.push({
|
|
multi_match: {
|
|
query: quote,
|
|
type: 'phrase',
|
|
fields: ['title', 'text']
|
|
}
|
|
})
|
|
}
|
|
|
|
// if we search for an exact string only, everything must match
|
|
// so score purely on sort field
|
|
let boostMode = query ? 'multiply' : 'replace'
|
|
let sortField
|
|
let sortMod = 'log1p'
|
|
switch (sort) {
|
|
case 'comments':
|
|
sortField = 'ncomments'
|
|
sortMod = 'square'
|
|
break
|
|
case 'sats':
|
|
sortField = 'sats'
|
|
break
|
|
case 'recent':
|
|
sortField = 'createdAt'
|
|
sortMod = 'square'
|
|
boostMode = 'replace'
|
|
break
|
|
default:
|
|
sortField = 'wvotes'
|
|
sortMod = 'none'
|
|
break
|
|
}
|
|
|
|
const functions = [
|
|
{
|
|
field_value_factor: {
|
|
field: sortField,
|
|
modifier: sortMod,
|
|
factor: 1.2
|
|
}
|
|
}
|
|
]
|
|
|
|
if (sort === 'recent') {
|
|
// prioritize exact matches
|
|
termQueries.push({
|
|
multi_match: {
|
|
query,
|
|
type: 'phrase',
|
|
fields: ['title^100', 'text'],
|
|
boost: 1000
|
|
}
|
|
})
|
|
} else {
|
|
// allow fuzzy matching with partial matches
|
|
termQueries.push({
|
|
multi_match: {
|
|
query,
|
|
type: 'most_fields',
|
|
fields: ['title^100', 'text'],
|
|
fuzziness: 'AUTO',
|
|
prefix_length: 3,
|
|
minimum_should_match: '60%'
|
|
}
|
|
})
|
|
functions.push({
|
|
// small bias toward posts with comments
|
|
field_value_factor: {
|
|
field: 'ncomments',
|
|
modifier: 'ln1p',
|
|
factor: 1
|
|
}
|
|
},
|
|
{
|
|
// small bias toward recent posts
|
|
field_value_factor: {
|
|
field: 'createdAt',
|
|
modifier: 'log1p',
|
|
factor: 1
|
|
}
|
|
})
|
|
}
|
|
|
|
if (query.length) {
|
|
// if we have a model id and we aren't sort by recent, use neural search
|
|
if (process.env.OPENSEARCH_MODEL_ID && sort !== 'recent') {
|
|
termQueries = {
|
|
hybrid: {
|
|
queries: [
|
|
{
|
|
bool: {
|
|
should: [
|
|
{
|
|
neural: {
|
|
title_embedding: {
|
|
query_text: query,
|
|
model_id: process.env.OPENSEARCH_MODEL_ID,
|
|
k: decodedCursor.offset + LIMIT
|
|
}
|
|
}
|
|
},
|
|
{
|
|
neural: {
|
|
text_embedding: {
|
|
query_text: query,
|
|
model_id: process.env.OPENSEARCH_MODEL_ID,
|
|
k: decodedCursor.offset + LIMIT
|
|
}
|
|
}
|
|
}
|
|
]
|
|
}
|
|
},
|
|
{
|
|
bool: {
|
|
should: termQueries
|
|
}
|
|
}
|
|
]
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
termQueries = []
|
|
}
|
|
|
|
const whenRange = when === 'custom'
|
|
? {
|
|
gte: whenFrom,
|
|
lte: new Date(Math.min(new Date(whenTo), decodedCursor.time))
|
|
}
|
|
: {
|
|
lte: decodedCursor.time,
|
|
gte: whenToFrom(when)
|
|
}
|
|
|
|
try {
|
|
sitems = await search.search({
|
|
index: process.env.OPENSEARCH_INDEX,
|
|
size: LIMIT,
|
|
_source: {
|
|
excludes: [
|
|
'text',
|
|
'text_embedding',
|
|
'title_embedding'
|
|
]
|
|
},
|
|
from: decodedCursor.offset,
|
|
body: {
|
|
query: {
|
|
function_score: {
|
|
query: {
|
|
bool: {
|
|
...(sort === 'recent' ? { must: termQueries } : { should: termQueries }),
|
|
filter: [
|
|
...whatArr,
|
|
me
|
|
? {
|
|
bool: {
|
|
should: [
|
|
{ match: { status: 'ACTIVE' } },
|
|
{ match: { status: 'NOSATS' } },
|
|
{ match: { userId: me.id } }
|
|
]
|
|
}
|
|
}
|
|
: {
|
|
bool: {
|
|
should: [
|
|
{ match: { status: 'ACTIVE' } },
|
|
{ match: { status: 'NOSATS' } }
|
|
]
|
|
}
|
|
},
|
|
{
|
|
range:
|
|
{
|
|
createdAt: whenRange
|
|
}
|
|
},
|
|
{ range: { wvotes: { gte: 0 } } }
|
|
]
|
|
}
|
|
},
|
|
functions,
|
|
boost_mode: boostMode
|
|
}
|
|
},
|
|
highlight: {
|
|
fields: {
|
|
title: { number_of_fragments: 0, pre_tags: ['***'], post_tags: ['***'] },
|
|
text: { number_of_fragments: 5, order: 'score', pre_tags: ['***'], post_tags: ['***'] }
|
|
}
|
|
}
|
|
}
|
|
})
|
|
} catch (e) {
|
|
console.log(e)
|
|
return {
|
|
cursor: null,
|
|
items: []
|
|
}
|
|
}
|
|
|
|
const values = sitems.body.hits.hits.map((e, i) => {
|
|
return `(${e._source.id}, ${i})`
|
|
}).join(',')
|
|
|
|
const items = (await itemQueryWithMeta({
|
|
me,
|
|
models,
|
|
query: `
|
|
WITH r(id, rank) AS (VALUES ${values})
|
|
${SELECT}, rank
|
|
FROM "Item"
|
|
JOIN r ON "Item".id = r.id`,
|
|
orderBy: 'ORDER BY rank ASC'
|
|
})).map((item, i) => {
|
|
const e = sitems.body.hits.hits[i]
|
|
item.searchTitle = (e.highlight?.title && e.highlight.title[0]) || item.title
|
|
item.searchText = (e.highlight?.text && e.highlight.text.join(' ... ')) || undefined
|
|
return item
|
|
})
|
|
|
|
return {
|
|
cursor: items.length === LIMIT ? nextCursorEncoded(decodedCursor) : null,
|
|
items
|
|
}
|
|
}
|
|
}
|
|
}
|